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Conformal 0(3,2) symmetry of the two-dimensional inverse 
square potential 
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The Mathematical Institute, University of Oxford, Oxford OX1 3LB, U K  

Received 1 June 1987 

Abstract. It is shown that the dynamical systems describing a point mass moving in a 
repulsive inverse square potential in a plane and a free relativistic massless particle are 
isomorphic to each other. The obvious conformal invariance of the massless particle 
appears as a hidden dynamical symmetry of the inverse square potential. 

1. Introduction 

It is known in the literature [l-83 that the mechanical problem of a non-relativistic 
point mass moving in an inverse square potential possesses a scalar O(2, 1) invariance 
algebra. This is spanned by the conserved quantities 

which satisfy the Poisson bracket relations: 

{ X , 9 } = - - %  {9, X} = -X {Ye, Yt} = - 2 9 .  (2) 
Using this ‘dynamical symmetry algebra’, together with the obvious rotational invari- 
ance, one can give a group theoretical derivation of important quantities in the quantum 
mechanical version of the inverse square potential problem [2,3]. This sort of situation 
is familiar from the study of the Coulomb problem (e.g. [9] and references therein) 
for which, in n-dimensional space, the complete dynamical group is O( n + 1,2).  The 
hidden symmetry of the Coulomb problem can be made explicit [ 10-131 by converting 
it into that of a free particle moving on a sphere or a hyperboloid, depending on the 
sign of the energy, in ( n +  1)-dimensional space. In analogy (and rather amusingly), 
here I show that a non-relativistic point mass moving in a plane under the influence 
of a repulsive inverse square potential can be transformed into a free relativistic 
massless panicle by a canonical transformation which also preserves the respective 
energies and angular momenta. The obvious conformal invariance of the massless 
particle, which amounts to an 0 ( 3 , 2 )  algebra in the two-dimensional case, appears as 
a hidden dynamical symmetry of the inverse square potential. The generators of 
relativistic time translation, dilatation and timelike ‘special conformal transformation’ 
span a scalar O(2,l)  subalgebra of the conformal 0(3,2) which is essentially identical 
to the O(2,l)  given by equations (1 )  and ( 2 )  above. 
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In  $ 2  we shall go through the conformal algebra of the free massless particle. Then 
in 5 3 I shall exhibit the equivalence with the inverse square potential problem. 

2. The conformal invariance of a free massless scalar particle 

Let T*Q be the cotangent bundle of the three-dimensional Minkowski space Q. It 
carries the standard symplectic form 

w = -de  6 = p, dx’ (CL = 0 , 1 , 2 )  (3) 

where x* = (xo, r ) ,  p @  = ( po, p )  are coordinates with respect to a fixed inertial frame 
in which gPy = diag( - l , l , l ) .  The ‘evolution space’ (throughout the paper I follow the 
terminology of Souriau [14]) ‘8: of a free spinless particle of mass 0 is a hypersurface 
in T*Q defined by the constraint 

m2 = -g,ypppy = o po> 0. (4) 

The motions of the particle give rise to a fibration of 8;. A particular motion can be 
specified by giving the vector r at which the corresponding worldline meets the xo = 0 
hyperplane and  p ,  the spacelike part of its conserved momentum. The ‘Lagrange form’ 
[14] wIa; descends to a symplectic form on the ‘space of motions’ 0; =R‘x (R2\{O}) 
which is in our coordinates d r ‘  A dp,. The infinitesimal generators of the conformal 
group of (0, g,”) are 

T, = a/aX@ 

D = X“ a l a “  

M,” = X, a/ax” - X, a/ax, 

K ,  = 2x,xOL a jax“  - X ~ X ,  ajax”. 
( 5 )  

These, when lifted to T*Q, preserve 8 as well as the constraint (4). Thus they descend 
to Hamiltonian vector fields on the symplectic manifold (O;, d r ’  A dp,).  The corre- 
sponding Hamiltonians (components of the moment map of the action of 0 ( 3 , 2 )  on 
0;) are given explicitly in the parameters ( r ,  p )  as follows: 

T,=TOJ8=-\p \  Y, = T, J 8 = p r  ( i = 1 , 2 )  

A,2 = M , 2  J 0 = E,,r’p’ A,, = Mor J 8 = lplr’ 

3. Equivalence through convenient coordinates 

Here we consider a non-relativistic point particle of mass p which moves in a plane 
and is acted upon by a repulsive force deriving from an  inverse square potential. Let 
the triplet (R,  P, t )  stand for the general element of the evolution space 8 = 
(R2\{O})xR2xR of the particle. Its energy X is given by ( 1 )  with /3 > O .  All the 
information about the mechanical problem considered here is encoded [ 141 in the 
Lagrange form Q defined on 8 by the formula 

( 7 )  
An arbitrarily given ( R ,  P, t )  determines, as an  initial value, a scattering trajectory of 
the particle. So on every trajectory there is a unique turning point. Let F(R,  P, t )  and 

0 = d R ‘  A dP,  +d%A dt. 
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r ( R ,  P, t )  be, respectively, the unit vector pointing to the turning point and the time 
when it is reached by the particle. A straightforward calculation results in the explicit 
formulae 

T =  t -  RkPk/2X 

F, = ( R, cos a + E,, R' sin cy ) / 1 RI 

where 

Now let Ar denote the space of motions (the quotient of 8 by the classical motions) 
of the problem under investigation. The conserved quantities T ,  F, L, X provide us 
with a smooth parametrisation of "4". The Poisson brackets of these observables are 

{R, L } = { % ,  F , } = { F , ,  F 2 } = { 7 ,  F,}=O 

{ X ,  r }  = 1 { L ,  F,}  = E,,F' 
(9) 

as is easy to check from (8). Now let us introduce new 'convenient' coordinates on A*: 

6, = -TF, + LEv FJ/  R 

{6t? lJ} = '8, 

r = 5  P = 5. (12) 

5, = XF,.  

It,, 61 = i l l ,  l,} = 0. 

(10) 

By virtue of (9) and ( lo) ,  the Poisson brackets of 5 and 6 are of the standard form 

(11) 

Thus we can define a canonical transformation between 0,' and .V by the equation 

Then, using this map, we can convert the conformal algebra of the free massless particle 
into a symmetry algebra of the inverse square potential problem. In terms of the 
variables ( L ,  %, T,  F,)  the generators of this 'dynamical symmetry algebra' take the 
following form: 

Yo=-% A,?= L 9 = -7% rt, = ( L2 + 9 ?)/ 2 

5, = XF, MO,  = 9 F ,  + LE,, FJ (13) 

X, = 2 9 L ~ , ~  FJ/  %+ (9?? - L') F,/  X .  

The interesting point is that, as can be seen from (11, (8) and (13), in addition to being 
a canonical transformation our map ( 12) also carries the respective energies, angular 
momenta and  dilatation generators into each other. The generators To= -2, 9, ?Lo 
span an  O(2 , l )  subalgebra of the conformal 0(3,2).  This is 'essentially identical' to 
the O(2, l )  algebra given by (1) and ( 2 ) .  To see this, first let us observe that the 
transformation 

(14) 

leaves the Poisson bracket relations at ( 2 )  unchanged for any smooth function f of L. 
The point is that the generator of relativistic 'timelike special conformal transforma- 
tions' 3"" is related to its non-relativistic analogue X by a transformation of this kind. 
In  fact, the following relation: 

rc + x + f ( L ) /  R 

X" = x+ (; L' - fpP) /  x (15)  
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holds, as is easily verified. So our dynamical 0(3,2)  symmetry algebra can be thought 
of as an extension of the O(2,l)  invariance algebra of the inverse square potential 
which was known previously [l-81. One has the O(2, l )  invariance in any dimensions; 
the existence of the extension given here seems to be a rather peculiar property of the 
two-dimensional case. In this case, one could construct a single unitary irreducible 
representation of 0(3,2) out of all the scattering states of a point mass moving in a 
repulsive inverse square potential background. For example, one could use the methods 
of geometric quantisation [ 14, 151 to construct the representation in question out of 
the homogeneous symplectic manifold ( N ,  d t ,  A d l ' )  = ( O i ,  dr, A dp') .  

It is easy to extend the map (12) to a one-to-one map between the evolution spaces 
S,' and S which carries the respective Lagrange forms wls;, and R into each other. 
To achieve this one simply has to identify, in addition to (12), the respective time 
coordinates xo and t. 

In conclusion, we have shown that the classical mechanics of a non-relativistic 
massive test particle moving in a plane in a repulsive inverse square potential is 
equivalent to that of a free relativistic massless particle. 
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